Programma di Laboratorio Di Calcolo Numerico E Informatica:
Metodi iterativi, successioni numeriche, teorema di Taylor e resto di Lagrange, teorema del valore medio. Errori numerici: assoluti e relativi.
Rappresentazione di numeri interi e reali, conversione tra basi numeriche, formati IEEE 754 per Floating Point, numeri macchina. Il codice ASCII. Nozione di algoritmo: il crivello di Eratostene, bubble sort.
Metodi per la ricerca di radici semplici: Metodo della bisezione. Regula Falsi. Metodo di Newton e della secante. Criteri di convergenza per il metodo di Newton, ordine di convergenza, stima dell’errore.
Generatori di numeri pseudo-casuali: Generatori congruenti lineari. Cenni sulle T-machine. Algoritmo di Mersenne Twister. Distribuzione uniforme ed esponenziale. Generatori di numeri pseudo-casuali e quasi-casuali: Distribuzione di Gauss (Metodo di Box-Muller). Differenziazione numerica: derivata prima e seconda (metodi a 2, 3 e 5 punti). Integrazione numerica: Metodo di Riemann, Errore di troncamento nell’integrazione di Riemann. Formula dei Trapezi e di Simpson. Formule gaussiane di quadratura. Integrali impropri, Metodo di Kantorovich per singolarita` isolate. Metodo Monte Carlo.
Metodi numerici per le equazioni differenziali ordinarie (ODE): Introduzione, errore di troncamento e di arrotondamento. Metodo di Eulero (approccio geometrico ed analitico) Errore di troncamento Metodo di Eulero, Metodo di Eulero perfezionato, Metodo di Eulero-Cauchy e metodi impliciti (trapezio). Predictor-corrector, Metodi di Runge-Kutta. Generalita` Metodo 2 ordine (Eunn, Eulero perfezionato). Metodo di Runge-Kutta 4 ordine. Controllo adattivo del passo.
Caos deterministico e dinamica non-lineare. Traiettorie, punti fissi, attrattori. Mappa logistica. Crescita delle popolazioni di May. Numero di Feigenbaum. Dimensione frattale: dimensione di Hausdorff-Besicovitch e metodo del box counting. Taxicab geometry. Automi Cellulari (AC): Introduzione Regole di transizione: totalistiche, probabilistiche, multipasso. Le funzioni iterative come AC 0-dimensionali, Aritmetica modulare, Entropia di Shannon: applicazione dell’entropia di Shannon a diversi AC 0-d. Funzione di Ulam. Automi 1-d, Gestione dei confini del dominio, Kernel di convoluzione. Automi 2-d Le regole per Life, evoluzione. Automi 2-d per la simulazione di sistemi complessi. Cluster percolativi. Modello Forest-Fire e Sand Pile. Automi Cellulari Dissipativi.
â¨Introduzione al linguaggio di programmazione Python.