Programma dei Moduli del Corso:

Calcolo1 | Docente:
Angelo Massimo Picardello

Numeri naturali, interi e razionali, numeri reali: proprieta’ e costruzione a partire dai numeri naturali. Estremo superiore ed estremo inferiore. Numeri complessi. Concetto di funzione. Funzioni monotone. Funzioni invertibili. Funzione inversa. Logaritmo. Insiemi aperti e chiusi e loro proprieta’. Definizione di successione. Successioni monotone. Limiti di funzioni e di successioni. Massimo e minimo limite. Insiemi compatti. Numero “e”. Infiniti e infinitesimi: simboli o e O e loro proprieta’. Limiti notevoli. Funzioni continue. Punti di discontinuità. Asintoti verticali, orizzontali ed obliqui. Serie numeriche e loro convergenza. Criterio di Cauchy. Serie a termini positivi: criterio del confronto, del rapporto, della radice e delle somme diadiche. Serie a segni alterni e criterio di Leibnitz. Convergenza assoluta e convergenza semplice. Riordinamento e teorema di Riemann. Serie di potenze. Continuità della funzione composta e della funzione inversa. Proprieta’ delle funzioni continue ed invertibili sugli intervalli e sui compatti. Teorema di esistenza degli zeri. Metodo di bisezione e teorema di Weierstrass sui massimi e minimi delle funzioni continue sui compatti. Derivata di una funzione. Derivata della funzione composta e della funzione inversa. Teoremi di Rolle, Lagrange, Cauchy, Hospital. Studio del grafico di funzioni reali di variabile reale; funzioni convesse; Formula di Taylor e sue applicazioni. Serie di potenze; serie di Taylor. Funzioni primitive; integrali indefiniti, finiti e impropri; teorema fondamentale del calcolo; integrali per sostituzione e per parti; calcolo di aree; criteri di integrabilità; criterio di confronto fra serie ed integrali impropri.




Calcolo2 | Docente:
Paolo Roselli

Serie di funzioni; convergenza puntuale, uniforme e convergenza totale delle serie di funzioni. Funzioni reali di piu' variabili: definizioni fondamentali di topologia in R^2; limiti e continuita' in piu' variabili; derivate parziali e differenziale; derivazione delle funzoni composte (regola della catena); derivate successive;massimi e minimi liberi; studio della natura dei punti critici. Funzioni di piu' variabili a valori vettoriali: trasformazioni di coordinate; coordinate polari nel piano e coordinate sferiche nello spazio. Calcolo integrale per funzioni di piu' variabili: integrazione multipla in R2 e R3; calcolo di integrali doppi o tripli mediante formule di riduzione; integrazione in coordinate polari e in coordinate sferiche. Curve e loro parametrizzazione: arco di curva continua e regolare; lunghezza di un arco di curva, parametro arco. Tempo permettendo: integrali curvilinei; lavoro di un campo di forze; parametrizzazione di superficie regolari; integrali di superficie. Visualizzazione di argomenti tipici del Calcolo tramite Matlab.